St. Mark's School of Texas Biology Club • Biotechnology Initiative • iGEM Team

BIOTECHNOLOGY INITIATIVE BUDGET PROPOSAL

BUDGET

Item	Number of Items	Cost
iGEM Registration Fee	1	\$1500.00
iGEM Jamboree Registration	5	\$950.00
Gene Cloning	Varies	\$500.00
Consumables		
Bacterial Culturing Consumables		
Media	Varies	\$100.00
Petri Dishes	Varies	\$50.00
Culture Tubes	Varies	\$100.00
Antibiotics	Varies	\$100.00
Cold/Frozen		
T4 DNA Ligase	Varies	\$100.00
RNAse	Varies	\$40.00
Primers	Varies	\$50.00
DNA Molecular Weight Markers	Varies	\$50.00
DNA Polymerase & Master Mix	Varies	\$100.00
Gibson Assembly Kit	Varies	\$200.00
3A Assembly Kit	Varies	\$250.00
Estimated Total		\$4,090.00

BUDGET PROPOSAL

The St. Mark's iGEM Team proposes a \$4,090.00 annual budget that does not include travel expenses for attendance at the iGEM Jamboree where students from around the globe gather to present their findings and learn more about synthetic biology. The amounts listed in this budget is the minimum amount of funding necessary for our research endeavor to be operational and productive in the context of our ultimate goal to create an inexpensive, sensitive, and noninvasive screening method for lung cancer, pulmonary tuberculosis, or breast cancer—three noncommunicable diseases (NCDs) currently known to be detectable by breath biomarkers. Inspired by the ability of canines to detect the occurence of certain diseases and health conditions through olfaction, we hope to create a device, similar to a breathlyzer, that would allow for the easy detection of the NCDs. Our proposed device could potentionally save thousands of lives in developing countries worldwide.