Team:SMTexas/Project

From 2014hs.igem.org

Revision as of 20:51, 1 May 2014 by VikReddy (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Project

Lung cancer is the leading cause of cancer-related death around the world. Early detection systems would enable us to diagnose the disease at a time when therapeutic intervention would be most effective. Noninvasive breath sampling has the potential to save lives as approximately 86% of lung cancer patients die within five years of diagnosis. Early detection improves survival rate by 50% from stage III to stage I of the cancer. Breath biochemical sensors also have important applications for other diseases. According to the World Health Organization’s latest report on noncommunicable diseases (NCDs), these “diseases are the leading global causes of death, causing more deaths than all other causes combined.” Further research into these noninvasive tests while maintaining the tests’ accuracy and sensitivity could have a major impact on survival rates of other NCDs. Tests of this nature would reduce inequity and provide improved means of treatment for affected individuals regardless of nationality, income, or access to healthcare.

While invasive techniques, such as immunofluorescence and Western Blotting already exist to detect the Epidermal Growth Factor Receptor (EGFR) biomarker, breath chemical tests via genetically modified Escherichia coli bacteria would be a novel and versatile method of lung cancer screening. Twenty-two volatile organic compounds (VOCs) have been found to be unique to the breath of affected patients, creating a viable “fingerprint” for reliable detection (Horvath et al.). We will utilize these concepts to create a biosensor for lung cancer.

Our team will design a system combining existing BioBricks along with novel synthesized biological parts to create a whole-cell bacterial sensor. We will attempt to create a breath biosensor through noninvasive intervention of lung cancer. Implementing recombinant DNA technology, the bacteria will be able to respond to environmental queues through a receptor-dependent pathway. The construct will fuse a DNA response element with reporter genes to create a portable biosensor. We are currently investigating E. coli promoters or alternative sigma factors in relation to our intended target compounds.

Retrieved from "http://2014hs.igem.org/Team:SMTexas/Project"