Team:Jefferson VA SciCOS/Project
From 2014hs.igem.org
Solving a 4-Node Traveling Salesman Problem Using the Hin/hixC Recombinant SystemOur project’s goal was to assess the accuracy, scalability, and feasibility of a novel bacterial computer paradigm for solving a 4-node Traveling Salesman Problem. |
Bacterial Computing: The Future of the IT Industry All in an Agar PlateWhere would humanity be without the advent and rise of the computer? The 21st century has marked humanity’s entrance into a new Digital Age; now, more than ever, does the global marketplace and humanity itself depend on a thriving information technology sector. From the pocket-sized computing devices that we use to manage our day-to-day tasks to the massive supercomputers that mirror human intelligence, from the databases that store millions of patient’s records to the Big Data servers that analyze the vast number of financial transactions that take place every second, computing has evolved into a ubiquitous science that is both humanity’s present as well as its future. For years, the physical limitations that deterred the development of faster, more efficient computing devices were easily maneuverable, allowing computing to present itself as the seemingly perpetual gale force that propelled the sails of our global economy. How accurate is bacterial computing? Can the algorithm be expected to reliably converge to a solution state regardless of the initial configuration? How scalable is bacterial computing? Will our group be able to scale the technique up to larger node problems and how stable are hixC-site constructs for different proteins? Will our group be able to solve a completely different problem than the Hamiltonian Path Problem? How feasible is bacterial computing? Bacterial computing features a paradigm where the hardware is far cheaper than the software. How will this compare to other computing paradigms when we perform a cost-benefit analysis? With these guiding questions in mind, our group has proposed a project that assesses the accuracy, scalability, and feasibility of a bacterial computer paradigm for solving different initial configurations of a 4-node Traveling Salesman Problem. Our work proposes a novel way of encoding the Traveling Salesman Problem using variable Ribosome Binding Site strengths and DNA constructs that can be solved by the Hin recombinase/HixC site system. |
The Traveling Salesman ProblemImagine you’re a salesman tasked with delivering goods to a set of towns. How can you find the shortest possible route to travel in order to visit every town exactly once to deliver your goods? This is exactly what the Traveling Salesman Problem seeks to find. The problem itself is extremely crucial to the transportation and shipping industry, where finding the shortest route possible can mean millions of dollars saved on the thousands upon thousands of goods delivered daily. Could bacteria performing computations in an agar plate hold the answer to this longstanding question? |