Project eutrophication.html

From 2014hs.igem.org

Revision as of 02:31, 21 June 2014 by Gonzila (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

<!DOCTYPE html> GenetiX - The Project

Eutrophication

Eutrophication is the process by which the increased availability of one or more limiting growth factors needed for photosynthesis cause excessive plant and algal growth. Some of these factors are the amount of carbon dioxide, sunlight and nutrient fertilizers. The elements coming from the nutrient fertilizers that especially affect the photosynthesis rate are nitrogen and phosphorus. (Chislock , 2013)
Plants require many different nutrients or components for the realization of photosynthesis. Nitrogen and phosphorus are the first components depleted in the water even though there is a greater amount of other needed substances.  While performing photosynthesis about 8 times more nitrogen is needed than phosphorus. Thus, phosphorus limits eutrophication if nitrogen is more than 8 times abundant as phosphorus, while nitrogen is the limiting factor when its concentration is less than 8 times abundant as phosphorus. Erosion of surrounding areas is also an important cause of eutrophication because the nutrients of the ground are not retained by the roots of plants and trees that should be there. So deforestation is an environmental element that strongly affects this process.  (UNEP, 1)
The process of eutrophication of an aquifer occurs naturally over centuries as they are filled with sediments, abundant in nutrients (figure 1). However, this process has been recently much accelerated due to the contamination produced by human activities. The discharges into aquatic systems bring a lot of limiting nutrients for eutrophication, including nitrogen and phosphorus. These polluting human residues thrown up into water systems come from point and non-point pollution sources. (Chislock, 2013)

Figure 1. Natural eutrophication

     The term “point source” is referred to as any single, discernible source from where the polluting agent is originated, such as a discharge pipe from a factory, sewage plant. The other term “non-point source” means that the pollution does not come from a single determinate source. This type of pollution happens when water moves across the land and pick in its way human-made pollutants that can be deposited later on in water bodies. (Harvey, 1)    
There are different levels of eutrophication according to how severe or advanced the process is. The first and harmless classification of eutrophication is the oligotrophic, where there is a low concentration of nutrients in the water and thus less biologic production. Then we have the mesotrophic where there are intermediate levels of nutrient concentrations and there is a moderate biologic production that doesn´t affect severely the aquatic environment. The real problem begins when we get to the eutrophic level where there is an elevated concentration of nutrients and a very high biologic productivity.  Another classification is reserved for where the nutrient levels reach extremely dangerous concentrations that take the aquifer´s condition to a critical state; it is called hypertrophic and is almost always caused by the cultural eutrophication. An important indicator for the eutrophication level is chlorophyll. The total amount of chlorophyll represents about 1% of plant biomass, so in this way the total biomass can be estimated allowing the determination of the degree of eutrophication. (Mazzeo, 1)

Table expressing the characteristic values for each of the eutrophication classifications. (UNEP)
Eutrophication brings a lot of complications to aquifers. The enormous creation of dense blooms of noxious, foul-smelling phytoplankton reduces water clarity and harms water clarity. These blooms limit light penetration to the water body. This limiting of sunlight to littoral zones causes the die-offs of the great amount of plants and algae that grew up without control due to eutrophication. When these dense algal blooms eventually die, microorganisms start the decomposition of organic matter and severely deplete the available dissolved oxygen, causing hypoxia or even anoxia. These hypoxic environments are cause of dead zones for most of the inhabiting organisms for the lacking oxygen. (Chislock 2013)
The normal levels of dissolved oxygen in water for the maintenance of life are around 6mg/L. Environments are considered hypoxic when the concentration of dissolved oxygen goes below 2.8 mg/L. When the dissolved oxygen levels reach the hypoxic condition many species die. Depending on the size and other characteristics of the organisms, the limiting concentration for survival will have low variations. The hypoxic conditions can change in different lapses of time. They can occur just for a few moments (minutes/hours) or they can reach chronic states that last for weeks or even months, causing depletion of local species. (Cisterna 2008)
It is important to supervise aquatic environments conditions´ to prevent the initiation of eutrophic conditions. Eutrophication can kill all life in natural environments. If some symptoms of eutrophication are detected in time it is possible to attack the problem and control it, or even eliminate it. Some methods for controlling eutrophication are:

  • Covering sediments, preventing release of nutrients.
  • Biomanipulation
  • Using chemicals such as copper sulfate to kill excess of algae
  • Aerating the hypolimnion of a lake, reducing the release of nutrients from the sediments.

(UNEP)