Team:FHS Frederick MD

From 2014hs.igem.org

(Difference between revisions)
(NirB Promoter)
 
(67 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert ***
+
{{:Team:FHS_Frederick_MD/Header}}
 +
=Overview=
 +
[[File:Tshirts.jpg|right|500px]]
 +
We are interested in creating a [[Team:FHS_Frederick_MD/Microbial_Fuel_Cells|microbial fuel cell]] that utilizes the facultative anaerobic bacteria, ''Shewanella oneidensis'', to produce [[Team:FHS_Frederick_MD/Renewable_Energy|renewable energy]] and [[Team:FHS_Frederick_MD/Clean_Water|clean water]].  
-
<html>
+
In order to optimize the growth conditions in the anaerobic chamber of the fuel cell, a fluorescent protein marker will be added so to visualize bacterial growth under different conditions.   
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #fe2b33; /*background-color: #fe2b33;*/">
+
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; /*color: #f6f6f6*/; padding: 5px;">
+
-
This is a template page. READ THESE INSTRUCTIONS.
+
-
</div>
+
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; /*color: #f6f6f6*/; padding: 5px;">
+
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wikiYou can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="/*text-align: center;*/ font-weight: bold; font-size: small; /*color: #f6f6f6*/; padding: 5px;">
+
-
You <strong>MUST</strong> have the following information on your wiki:
+
-
<ul style="font-weight:normal;">
+
-
<li>a team description</li>
+
-
<li>project description</li>
+
-
<li>safety information (did your team take a safety training course? were you supervised in the lab?)</li>
+
-
<li>team attribution (who did what part of your project?)</li>
+
-
</ul>
+
-
You may also wish to add other page such as:
+
-
<ul style="font-weight:normal;">
+
-
<li>lab notebook</li>
+
-
<li>sponsor information</li>
+
-
<li>other information</li>
+
-
</ul>
+
-
REMEMBER, keep all of your pages within your teams namespace. <br><span style="font-weight:normal; font-style:italic;">Example: 2013hs.igem.org/Team:FHS_Frederick_MD/Our_Pets</span>
+
-
</div>
+
-
</div>
+
-
</html>
+
-
*********************** End of the alert box *********************** -->
+
We plan to accomplish this using the [[Team:FHS_Frederick_MD/NirB_Promoter|NirB oxygen-sensitive promoter]] to induce expression of the glowing gene only when oxygen is scarce.  Furthermore, we must engineer a fluorescent [[Team:FHS_Frederick_MD/LOV_Domain|LOV domain]], which is optimized for expression in ''S. oneidensis'' and capable of fluorescence under anaerobic conditions. 
-
 
+
This genetic construct will help us ensure that the bacteria are actually growing under anaerobic conditions.  This would lead to the creation of a BioBrick that can be deposited back into the “toolbox” parts repository for future iGEM teams.
-
 
+
{{:Team:FHS_Frederick_MD/Footer}}
-
{|align="justify"
+
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
-
|[[Image:FHS_Frederick_MD_logo.png|200px|right|frame]]
+
-
|-
+
-
|
+
-
''Tell us more about your project.  Give us background.  Use this as the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
+
-
|[[Image:FHS_Frederick_MD_team.png|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:FHS_Frederick_MD | Team FHS_Frederick_MD]]
+
-
|}
+
-
 
+
-
<!--- Team Information Link --->
+
-
 
+
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
-
!align="center"|[https://igem.org/Team.cgi?year=2013&division=high_school&team_name=FHS_Frederick_MD Official Team Profile]
+
-
|}
+
-
 
+
-
===Team===
+
-
 
+
-
We are interested in creating a microbial fuel cell that utilizes anaerobic bacteria to produce electricity.  In order to optimize the growth conditions in the fuel cell, a fluorescent protein marker will be added so to visualize bacterial growth.  We plan to implement an oxygen-sensitive promoter to induce expression of the glowing gene.  This should ensure that bacteria only grow under anaerobic conditions.  This would lead to the creation of a genetic construct that can be deposited back into the “toolbox” parts repository for iGEM.
+
-
 
+
-
===Goals===
+
-
 
+
-
===Microbial Fuel Cells===
+
-
This is about microbial fuel cells.
+
-
(Alan's section)
+
-
 
+
-
A microbial fuel cell is a device that converts the chemical reactions of bacteria into electricity. Within the fuel cell certain bacteria under anaerobic conditions will remove the electrons from organic matter and transfer them to an anode, which will then transfer the electrons through a circuit to a cathode. The current and voltage produced by this process is what creates the electricity required to power certain objects such as a light bulb.
+
-
 
+
-
The bacteria that we are currently creating is meant to optimize the microbial fuel cell's potential, as bacteria that will glow under anaerobic conditions will reveal any weaknesses in the fuel cell, structural or otherwise, which can then be assessed and dealt with.
+
-
 
+
-
===Gene Design===
+
-
(Kyle and Jonathon, briefly summarize how NirB and LOV work together.)
+
-
 
+
-
====NirB Promoter====
+
-
(Kyle, can you add a paragraph here on the NirB promoter?)
+
-
nirB gene is reliant on FNR [1,2]; FNR allows the promoter to activate when there is no oxygen. FNR help regulate the transcription that is responsible for the growth under anaerobic environment.
+
-
 
+
-
====LOV Domain====
+
-
(Jonathon, this is your area to describe how we engineered the LOV gene.)
+
-
 
+
-
===Methods===
+
-
 
+
-
(This is Dillon's domain.)
+
-
 
+
-
====3A Assembly====
+
-
 
+
-
We used the 3A, or 3 antibody, assembly kit in order to transform E.coli with two genes, the LOV gene and the NirB gene.  These genes  will allow for further work with Schwenella bacteria in the anaerobic microbial fuel cell.  We then used the mini-prep components of the kit to purify our plasmid. We verified the plasmid's presence through electrophoresis and further  sequence analysis.
+
-
 
+
-
===Notebook===
+
-
Show us how you spent your days.
+
-
 
+
-
Can we include a link to our website,rather than re-write all the procedures?
+
-
 
+
-
===Results/Conclusions===
+
-
What did you achieve over the course of your semester?
+
-
 
+
-
 
+
-
===Safety===
+
-
What safety precautions did your team take? Did you take a safety training course? Were you supervised at all times in the lab?
+
-
 
+
-
We wore gloves and lab coats during each lab experiment in order to maintain sterility
+
-
Goggles were worn during lab in order to protect our eyes
+
-
Supervision was a necessity. Either Mr. Trice  or Dr. Rozak were always present during all lab experiments.
+
-
 
+
-
===Attributions===
+
-
 
+
-
(ALL: Please write something about yourself and what you have been doing on the team.)
+
-
 
+
-
{|
+
-
|-
+
-
|[[Image:KyleA.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Kyle Andrushko''' ...
+
-
|-
+
-
|[[Image:DillonK.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Dillon Kestner''' ...
+
-
|-
+
-
|[[Image:JonathonS.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Jonathon Soward''' ...
+
-
|-
+
-
|[[File:AlanN.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Alan Nguyen''' ...
+
-
|-
+
-
|[[Image:MarkT.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Mark Trice''' is a teacher at Frederick High School, where he teachers classes such as Chemistry, Physics, Biology, and Advanced Placement Biology.  He also serves as the vice president on the board for the nonprofit organization, Ars Biotechnica.  Mark has worked with his iGEM club for 2 years and is so excited to see this project come to fruition.
+
-
|-
+
-
|[[Image:DaveR.jpg|100px]]
+
-
|style="vertical-align:top;"|'''David Rozak''' is a research scientist at the United States Army Medical Research Institute for Infectious Diseases and a founding director of the nonprofit organization, Ars Biotechnica, Inc.  Dave has been working with the Frederick High School Bioengineering Club for two years and served as an advisor to our iGEM team.
+
-
|-
+
-
|[[File:GaryL.jpg|100px]]
+
-
|style="vertical-align:top;"|'''Gary Lopez''' ...
+
-
|}
+
-
 
+
-
 
+
-
<forum_subtle />
+
-
 
+
-
===Human Practices===
+
-
What impact does/will your project have on the public?
+
-
 
+
-
As renewable energy and alternative energy resources have become more and more important in the world we live in today, answers, not suggestions, must be found.  The research we enacted will allow naturally-occurring bacteria in the soil to generate electricity, rather than traditional methods, such as coal.  Through the genetic engineering of the bacteria, we  will be able to enhance the bacteria's ability to deposit electrons on the electrodes to produce electricity.
+
-
 
+
-
====Renewable Energy====
+
-
(Kyle: How do fuel cell help produce clean renewable energy?)
+
-
 
+
-
====Clean Water====
+
-
(Alan: How do fuel cell produce a clean source of water?)
+
-
 
+
-
====Basic Research====
+
-
(Dillon: How will the oxygen-sensitive fluorescent gene we're making help people study and improve upon microbial fuel cell performance?)
+
-
 
+
-
Researchers could use our fluorescent gene to determine the length of time it takes for the bacteria to begin generating energy.  Research could be done to amplify the gene and cause the bacteria to generate more energy in a more timely time frame.
+
-
 
+
-
Researchers could also use the gene to determine the optimal bacterial concentration that needs to be implemented in order to maximize energy output.
+
-
 
+
-
With the glowing gene, researchers could also look at optimal soil types i.e. what nutrients are in the soil, the moisture amount, the soil analysis, etc.  Certain soils may generate more electricity or more nutrients may need to be added to soil in order to maximize performance.  Farmers may also be able to look at what crops produce certain nutrients and then plan from there as to how to generate  electricity.
+
-
 
+
-
The gene could  also be examined in order to increase electrical output on a larger scale and thus increasing fuel cell performance.
+
-
 
+
-
====Public Awareness====
+
-
(Jonathon: Discuss how our meeting with Cardin helped raise public awareness for STEM.)
+
-
 
+
-
===Fun!===
+
-
What was your favorite team snack?? Have a picture of your team mascot?
+
-
 
+
-
[[File:Tshirts.jpg|500px]]
+
-
[[File:cardin.jpg]]
+
-
 
+
-
<forum_subtle />
+
-
 
+
-
 
+
-
===Sponsors===
+
-
 
+
-
We'd like to thank the following organizations for making this possible.
+

Latest revision as of 01:43, 21 June 2014

FHS Logo.png


Overview

Tshirts.jpg

We are interested in creating a microbial fuel cell that utilizes the facultative anaerobic bacteria, Shewanella oneidensis, to produce renewable energy and clean water.

In order to optimize the growth conditions in the anaerobic chamber of the fuel cell, a fluorescent protein marker will be added so to visualize bacterial growth under different conditions.

We plan to accomplish this using the NirB oxygen-sensitive promoter to induce expression of the glowing gene only when oxygen is scarce. Furthermore, we must engineer a fluorescent LOV domain, which is optimized for expression in S. oneidensis and capable of fluorescence under anaerobic conditions.

This genetic construct will help us ensure that the bacteria are actually growing under anaerobic conditions. This would lead to the creation of a BioBrick that can be deposited back into the “toolbox” parts repository for future iGEM teams.

IGEM-logo.png


Return to the iGEM 2014 HS Main Page